Introduction to Database
Systems

CSE 444

Lecture #11
Feb 12 2001

Announcements

$¥HW#2 due on Wed
¥MidTerm will be returned next week

Concurrency Control:
Review

#Provides Isolation

¥ Correctness = Serializability

FStronger Condition: Conflict Serializability
R Tested through precedence graph

F¥Implemented through locking
BCompatibility among locking modes
&lLocking Protocol: 2PL

The Phantom Problem

Accounts: {(1, Redmond, 100), (2,
Redmond, 40, (3, UW, 1000)}

Assets: {(Redmond, 140), (UW, 1000)}

#8T1: Add all accounts in Redmond and
compare to total in assets. Report error

#$T2: Insert a new account {(7,
Redmond, 5000)}

Phantom Problem: Analysis

3T1 locks all existing Redmond accounts and
reads accounts

T2 locks and introduces the new account and
assets. Releases all locks
38T1 locks the assets data and compares total
38 Schedule is not serial
HThe new account is a phantom tuple
38 Observation

HEnsure that the “right” objects are locked
XlLock all accounts with branch = Redmond
&INo change in 2PL needed

Implementing Locking

3Needs to execute Lock and Unlock as
atomic operations

¥Needs to be very fast ~100 instructions

38Lock Table

RlLow-level data structure in memory (not SQL
Table!)

HImplemented as a hash table




Issues in Managing Locks

FMulti-granularity locking
HConcurrency v.s. locking overhead
HIntention locks on higher-level objects
HLock Escalation

FHot spots
EAMinimize lock duration

SQL-92 Syntax for
Transactions

FStart Transaction: No explicit statement.
Implicitly started
IBy a SQL statement
HITP monitor (agents other than application
programs)
¥End Transaction:
®By COMMIT or ROLLBACK
[~IBy external agents

SQL-92: Setting the
Properties of Transactions

$8SET TRANSACTION
B[READ ONLY | READ WRITE]
ISOLATION LEVEL

[READ UNCOMMITTED | SERIALIZABLE |
REPEATABLE READ | READ COMMITTED]

Explanation of Isolation
Levels

¥ Read Uncommitted
RICan see uncommitted changes of other transactions
EIDirty Read, Unrepeatable Read
E®IRecommended only for statistical functions

¥ Read Committed
HCan see committed changes of other transactions
&INo Dirty read, but unrepeatable read possible
HAcceptable for query/decision-support

¥ Repeatable Read
&INo dirty or unrepeatable read
EIMay exhibit phantorn phenomenon

3 Serializable 10

Implementation of
Isolation Levels

ISOLATION DIRTY UNREPEATABLE PHANTOM  IMPLEMENTATION

LEVEL  READ READ
uncommited| Y Y Yo e
St | N Y[y [
Resz:t;’sb'e N N Y Strict 2PL on data
serializable | N N N | i o precict osking)

Summary of Concurrency
Control

& Concurrency control key to a DBMS.

¥ Transactions and the ACID properties:

|1 handled by concurrency control.
&A & D coming soon with logging & recovery.

3 Conflicts arise when two Xacts access the
same object, and one of the Xacts is
modifying it.

& Serial execution is our model of correctness.




Summary of Concurrency
Control (Contd.)

3 Serializability allows us to “simulate” serial
execution with better performance.

3 2PL: A simple mechanism to get serializability.

3 Lock manager module automates 2PL
ALock table is a big main-mem hash table

3 Deadlocks are possible, and typically a
deadlock detector is used to solve the
problem.

Recovery

Reading: Chapter 8

Review: The ACID
properties

s A tomicity: All actions in the Xact happen, or none
happen.

3¢ C onsistency: If each Xact is consistent, and the
DB starts consistent, it ends up consistent.

38 I solation: Execution of one Xact is isolated from
that of other Xacts.

¢ D urability: If a Xact commits, its effects persist.

#The Recovery Manager guarantees Atomicity &
Durablllty 15

Motivation

¥ Atomicity:
R Transactions may abort (“Rollback”).
3 Durability:
EWhat if DBMS stops running? (Causes?)

< Desired Behavior after

Rollback and Concurrency

¥ How does one undo the effects of a xact?

¥What if another Xact sees these effects??
XIMust undo that Xact as well

system restarts: T1 crash!
- T1,T2&T3shouldbe |1,  +—s !
durable. T3 [ I
— T4 & T5 should be T4 1
aborted (effects not seen). | T5 T
16
1 712
Cascading Aborts RA)
W(A)
. R(A)
38Abort of T1 requires abort of T2! Wea

[~ICascading Abort

#An ACA (avoids cascading abort)
schedule is one in which cascadiriy awort
cannot arise:
A Xact only reads data from committed Xacts.




L 12
Recoverable Schedulesr®

\W(A)
R(A)
3 Abort of T1 requires abort of T2! W(A)
[But T2 has already committed! commit
38 A recoverable schedule is one in

- - ‘abort
which this cannot happen. —

Hli.e., a Xact commits only after all the Xacts it reads
from commit.

~IACA implies Recoverable (but not vice-versa!).
3 2PL ensure that only recoverable schedules arise

What is Recovery?

3 Concurrency control is in effect.
[(IStrict 2PL, in particular

3 Discussion on Recovery may be based on
&ISingle user, but multiple concurrent transactions

3 User does transactions but failures are possible

¥ Recovery: scheme to guarantee Atomicity &
Durability of user transactions

Assumption (for Simplicity)

¥Page Granularity for everything
[Database = Set of Pages

BEach update by a transaction applies to only
one page

BEach update writes a whole page

HLocks are set on pages

Storage Model

¥ Stable Database
&0ne copy for every database page
¥ Database Buffer/Cache

R0ne copy of some of the database pages
accessed/updated

RMay contain updates that have not been
written to stable database): dirty pages

Storage Model: Cache
Manager

38 Cache Descriptor Table
[Database Page
E®IMain memory address
HIDirty bit
AIPin count

¥ Operations
HFetch(P), Pin(P), UnPin(P)
HFlush(P) [sync write], Deallocate(P)

A Simplified Way of
Thinking

BINPUT(X): read element X to memory buffer

$READ(X,t): copy element X to transaction local
variable t

FWRITE(X,t): copy transaction local variable t to
element X

$EOUTPUT(X): write element X to disk
3 Somewhat inaccurate account?




Example
READ(Ab); t := t*2; WRITE(A,t)
READ(B,t); t := t*2;WRITE(B,t)

Action T MemA | MemB | Disk A Disk B
REAT(At) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

Types of Failures

3 Data Integrity

HPrevent by constraints in the database/good software
practices, Fix with data cleaning applications

¥ Transaction failure: When a transaction aborts
&IFix with recovery
38 System failures: Loss of contents of volatile
store (Power/OS outrage)
HPrevent by stable storage, Fix with recovery
3 Media Failure: Loss of contents of disk

HPrevent by using redundancy (RAID, archive), Fix
with recovery

Handling System Failures

#¥When system crashes, internal state is
lost
RDon't know which parts executed and which
didn't
¥Remedy: use a log
~IA file that records every single update

The Log

3 An append-only file containing log records
& Multiple transactions run concurrently, log
records are interleaved
38 After a system crash, use log to:
IRedo some transaction that didn’t commit
BAUndo other transactions that didn't commit
¥ Techniques
HUndo Logging
Redo Logging
HUndo/Redo Logging (preferred)

Undo Logging

Log records

$<START T> = transaction T has begun
¥ <COMMIT T> = T has committed
$<ABORT T>= T has aborted

#<T,X,v>= T has updated element (page)
X, and its old value was v

Undo-Logging Rules

U1l: If T modifies X, then the log record
<T,X,v> must be written to disk before X
is written to disk

U2: If T commits, then <COMMIT T> must

be written to log only after all changes by
T are written to disk




Action T MemA | MemB | Disk A Disk B Log
<START T>
REAT(A,t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A8>
READ(B,t) 8 16 8 8 8
ti=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) | 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
<COMMIT T>

Recovery with Undo Log

After system’s crash, run recovery manager

¥Idea 1. Decide for each transaction T
whether it is completed or not

R<START T>....<COMMIT T>.... =yes
R<START T>....<ABORT T>....... = yes
EI<START T>..oooviieeeiieieene =no

3Idea 2. Undo all modifications by
incomplete transactions

Recovery with Undo Log

Recovery manager:

¥Read log from the end; cases:
B<COMMIT T>: mark T as completed
[RI<ABORT T>: mark T as completed

H<T,X,v>: if T is not completed
then write X=v to disk
else ignore

R<START T>: ignore

Recovery with Undo Log

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1v1l>
<T5,X5,v5>
<T4,X4v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2v2>

Recovery with Undo Log

#Note: all undo commands are jdempotent
HIIf we perform them a second time, no harm
is done
~IE.g. if there is a system crash during
recovery, simply restart recovery from scratch

Recovery with Undo Log

When do we stop reading the log ?

¥We cannot stop until we reach the
beginning of the log file

3 This is impractical

¥6Better idea: use checkpointing




Checkpointing

Checkpoint the database periodically
FStop accepting new transactions
F$Wait until all current transactions

complete

38Flush dirty pages to disk

¥Write a <CKPT> log record

#Resume transactions

Undo Recovery with
Checkpointing

. <T9.X9v9> other transactions
During recovery, -

Can stop &t first (ail completed)
<CKPT> <CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1X1yvl>
<T5,X5,v5>
<T4,X4v4>
<COMMIT T5>
<T3,X3v3>
<T2,X2v2> 38

transactions T2,73,T4,T5

Nonquiescent
Checkpointing

3Problem with checkpointing: database
freezes during checkpoint

F¥Would like to checkpoint while database is

operational

#=nonquiescent (fuzzy) checkpointing

Nonquiescent
Checkpointing

38 Stop accepting any new update/commit/abort
RIMake a list of all dirty pages in the buffer
®Write a <START CKPT(T1,...,Tk)>
where T1,..., Tk are all active transactions
&8 Start normal operation
&Flush unpinned dirty pages as a low-priority item
¥ When all of T1,..., Tk have completed, and their
dirty pages written out
Rwrite <END CKPT>

EICannot start a <START CKPT...> until earlier <END
CKPT> is complete

40

Undo Recovery with
Nonquiescent Checkpointing

During recovery,
Can stop at first
<START CKPT>

Q: What if no
<End CKPT>in
thelog?

<START CKPT T4, T5, T6>

<END CKPT>

earlier transactions plus
T4,T5,T6

T4, 75, T6, plus
later transactions

later transactions

41

Redo Logging

Log records

$<START T> = transaction T has begun
¥ <COMMIT T> = T has committed
$<ABORT T>= T has aborted

¥<T,X,v>= T has updated element X, and
its new value is v

42




Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to log
before X is written (flushed) to disk

Lazy write to disk — may need to “redo”
work during recovery

43

Action T MemA | MemB | Disk A | Disk B Log
<START T>
REAT(A,t) 8 8 8 8
ti=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A16>
READ(B,t) 8 16 8 8 8
ti=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
<COMMIT T>
OUTPUT(A) | 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

44

Recovery with Redo Log

After system’s crash, run recovery manager

¥Step 1. Decide for each transaction T
whether it is completed or not

[AI<START T>....<COMMIT T>.... =yes
[AI<START T>....<ABORT T>....... = yes
RI<START T>..ooviveeeeen, =no

3Step 2. Read log from the beginning, redo
all updates of committed transactions

45

Recovery using Redo Log

For committed transactions
&Replay Write() for the log record <T,X,v>
#For each incomplete transaction T
RWrite <Abort T> to log
$Follow Example 8.8

46

Example: Recovery with
Redo Log

<START T1>
<T1X1vi>
<START T2>
<T2, X2,v2>
<START T3>
<T1,X3v3>
<COMMIT T2>
<T3,X4,\v4>
<T1,X5v5>

47

Nonquiescent
Checkpointing

$Write a <START CKPT(T1,..., Tk)>
where T1,..., Tk are all active transactions
$8Flush to disk all blocks of committed
transactions (dirty blocks), while
continuing normal operation

#¥When all blocks have been written, write
<END CKPT>

48




Redo Recovery with
Nonquiescent Checkpointing

<STA RT T1>
Step 1: look for <CoMMITTL> Step 2: redo
Thelast - from there,
<END CK PT> <START CKPT T4, T5, T6> |gn0r| I"Ig.
transactions
committed
All OUTPUTS <END CKPT> earlier
of Tlare
known to be on disk
;.START CKPT T9, T10>

49

Comparison Undo/Redo

#Undo logging:
BOUTPUT must be done early
HIf <COMMIT T> is seen, T definitely has
written all its data to disk
¥Redo logging
EIOUTPUT must be done late

HIIf <COMMIT T> is not seen, T definitely has
not written any of its data to disk

Undo/Redo Logging

#8Log Record: <T,X,u,v>= T has updated
element X, its o/d value was u, and its
newvalue is v

FBRule: If T modifies X, then the log record
<T,X,u,v> must be written to disk before
X is written to disk

Action T MemA | MemB | Disk A | Disk B Log
<START T>
REAT(A,t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8 <T,A8,16>
READ(B,t) 8 16 8 8 8
ti=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8,16>
OUTPUT(A) 16 16 16 16 8
<COMMIT T>
OUTPUT(B) 16 16 16 16 16

Recovery with Undo/Redo
Log

After system’s crash, run recovery manager

#Redo all committed transaction beginning at last
checkpoint

#Undo all uncommitted transactions, until last
checkpoint

Recovery with Redo Log

<START T1>
<T1,X1v1l>
<START T2>
<T2,X2,v2>
<START T3>
<T1,X3v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5Vv5>




Media Failure

¥Redundancy is the key

RIShadowed Disk/RAID either for database or
at least for the log
RCannot afford to lose part of a log!

XIOnly place which has before-image (after-image)
of uncommitted data written (not written) to disk

&IMinimize shared hardware
3Using Archive (next lecture)

Summary

3 Checkpointing: A quick way to limit the amount

of log to scan on recovery.
¥ Recovery works in 3 phases:
BAnalysis: Forward from checkpoint.
Redo: Forward from checkpoint.
BAUndo: Backward until checkpoint
¥ Tolerating media Failure requires more
redundancy

#Many more optimizations in real system

10



